Congruence Class Sizes in Finite Sectionally Complemented Lattices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruence-preserving Extensions of Finite Lattices to Sectionally Complemented Lattices

In 1962, the authors proved that every finite distributive lattice can be represented as the congruence lattice of a finite sectionally complemented lattice. In 1992, M. Tischendorf verified that every finite lattice has a congruence-preserving extension to an atomistic lattice. In this paper, we bring these two results together. We prove that every finite lattice has a congruence-preserving ex...

متن کامل

Congruence Lattices of Finite Semimodular Lattices

We prove that every finite distributive lattice can be represented as the congruence lattice of a finite (planar) semimodular lattice.

متن کامل

Computing Congruence Lattices of Finite Lattices

An inequality between the number of coverings in the ordered set J(Con L) of join irreducible congruences on a lattice L and the size of L is given. Using this inequality it is shown that this ordered set can be computed in time O(n2 log2 n), where n = |L|. This paper is motivated by the problem of efficiently calculating and representing the congruence lattice Con L of a finite lattice L. Of c...

متن کامل

Automata with Finite Congruence Lattices

In this paper we prove that if the congruence lattice of an automaton A is finite then the endomorphism semigroup E(A) of A is finite. Moreover, if A is commutative then A is A-finite. We prove that if 3 ≤ |A| then a commutative automaton A is simple if and only if it is a cyclic permutation automaton of prime order. We also give some results concerning cyclic, strongly connected and strongly t...

متن کامل

Finite distributive lattices are congruence lattices of almost- geometric lattices

A semimodular lattice L of finite length will be called an almost-geometric lattice, if the order J(L) of its nonzero join-irreducible elements is a cardinal sum of at most two-element chains. We prove that each finite distributive lattice is isomorphic to the lattice of congruences of a finite almost-geometric lattice.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian Mathematical Bulletin

سال: 2004

ISSN: 0008-4395,1496-4287

DOI: 10.4153/cmb-2004-019-3